Lack of integrin β5 in Merkel cell carcinomas and derived cell lines is frequently associated with Merkel cell polyomavirus positivity

Baki Akgül1, Paola Zigrino2, Martin Hufbauer1, Xi Liu3, Patrick S. Moore3, Cornelia Mauch2, and Herbert Pfister1

1Institute of Virology, National Reference Centre for Papilloma- and Polyomaviruses, University of Cologne, Germany
2Department for Dermatology and Venerology, University of Cologne, Germany
3Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, USA

To the editor:

Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin neoplasia. The Merkel cell polyomavirus (MCPyV), a double-stranded DNA tumor virus was discovered in 2008. It is found in approximately 80% of human MCC and is suspected to play a role in MCC development [1]. Both, small tumor and the aminoterminal moiety of the large tumor antigen, were found to be expressed in MCPyV-positive MCC [2]. Merkel cells are usually scattered in the basal cell layer of the epidermis along the dermo-epidermal junction [3].

A number of MCC cell lines, with and without clonally integrated MCPyV, have been established from MCC tumours and represent valuable tools to study aspects of tumourigenesis in vitro. The MCPyV-negative cell lines UISEO [4], MCC13 [5] and MCC26 [6] grow adhesively, whereas MaTi cells [7] grow in suspension. The MCPyV-positive cells MKL-1, MS-1, WaGa [2] and MKL-2 [6] all grow in suspension. Cells growing in suspension have not only lost their capability to bind to the extracellular matrix (ECM), but also proliferate slower than those growing adherently [2, 7].

Cells of all types interact with the ECM via integrins, heterodimeric transmembrane receptors composed by an α and β subunit. Integrins not only participate in cell-ECM adhesion, but may also function as receptors that transduce signals to the cell interior via the cytoskeleton and thus stimulate proliferation [8]. We therefore hypothesized that non-adherent MCC cell lines may show differences in integrin expression compared to adherent MCC cell lines, which are responsible for attachment and their growth behaviour. To prove this, we evaluated the expression of integrin subunits α2, α3, α5, α6, αv, β1, β3, β4, β5 and β6, known to be expressed in the human skin [8], on the adherent and non-adherent MCC cell lines. Samples were analyzed in duplicate together with a dilution series of a standard-plasmid containing the corresponding cDNA, which was used to generate a standard curve. To emphasize the relative differences between subunits, the mRNA expression levels were calculated relative to the absolute amounts of Hypoxanthin-Phosphoribosyl-Transferase-1 (HPRT1) transcripts used as internal control. The expression of integrin subunits was initially measured in the adherent MCPyV-negative line UISEO and
the MCPyV-positive line MS-1, growing in suspension. The qRT-PCR results revealed that both cell lines do not express integrin α2, α5, α6, β3, β4 and β6 (data not shown). The integrins αv and β1 are expressed in comparable amounts by both UISO and MS-1 cells whereas transcript levels of integrin α3 and β5 were high in UISO cells and barely detectable in MS-1 cells, with a 96- and 2180-fold difference respectively (Figure 1a). To confirm this observation at the protein level Western blots of cell extracts were evaluated. In line with qRT-PCR results, α3 and β5 proteins were highly expressed in UISO cells but undetectable in MS-1 cells (Figure 1b).

We next studied the expression of α3- and β5-integrin levels on additional MCPyV-positive and MCPyV-negative cell lines using whole cell lysates. As shown in Figure 1c, the expression level of β5-integrin was also high in the adherent MCPyV-negative cell lines MCC13 and MCC26 but low in MaTi cells, which grow in suspension. In the MCPyV-positive lines MKL-1, MKL-2 and WaGa, all growing in suspension, β5-integrin was undetectable. In all these cell lines, α3-integrin could not be detected. The expression of α3-integrin in UISO cells thus appears to be exceptional and lack of β5-integrin expression correlates with the MCC cell line growth in suspension. This does not exclude that other transmembrane molecules contribute to cell adhesion.

This phenotype is also rather strongly correlated with MCPyV positivity (Table S1). We were next interested to study β5-integrin expression in MCPyV-positive and -negative MCC in vivo and therefore performed immunohistochemical staining on paraffin embedded sections. Nine MCC cases were obtained from the files of the Department of Dermatology and Venerology of the University of Cologne. MCPyV load quantification has been performed as previously described [9]. For virus-negative MCC, three showed strong (Fig. 2A) and two showed intermediate β5-integrin staining. For MCPyV-positive MCC, one tumor with a load of 2.6 viral DNA copies per cell had intermediate β5-integrin staining (Fig. 2B) while the remaining three tumors (one with a viral load of 2.8 MCPyV DNA copies per cell and two with 23 copies per cell) showed weak staining for β5-integrin (Fig. 2C). Thus, viral positivity inversely correlated with β5-integrin expression.

This data provides some explanation, why MCC cell lines show distinct growth behaviour in culture related to MCPyV status. In vivo MCPyV-positive MCC are more likely to have low β5-integrin, which is characteristic for MCC cell lines growing in suspension. In adherent cells the presence of β5 and αv subunits can lead to formation of the vitronectin receptor αvβ5, which may be important for attachment and migration of Merkel cells. Changes in cell-matrix adhesion may affect metastasis formation. Whether, in addition to viral positivity a progressive loss of β5-integrin expression influences MCC prognosis is presently not clear. Additional studies are needed to clarify, if MCPyV directly or indirectly affects β5-integrin expression and thereby growth and attachment of Merkel cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the German National Reference Center for Papilloma- and Polyomaviruses (German Federal Ministry of Health, grant number FKZ 1369-401) and US NCI grants CA136363 and CA120726. We thank Masahiro Shuda, Huichen Feng and Yuan Chang, University of Pittsburgh, for advice and help with obtaining MCC cell lines.
References

Figure 1.
(A) Integrin mRNA expression in UISO and MS-1 cells was quantified in qRT-PCR and normalized to the expression level of HPRT1. (B, C) Total cell extracts were prepared with RIPA buffer and analysed by Western blotting. Blots were probed with antibodies to tubulin (clone YL1/2, Abcam), β5-integrin (rabbit polyclonal Abcam, Cambridge, UK) and α3-integrin (clone c-18, Santa Cruz, Heidelberg, Germany).
Figure 2.
Formalin fixed and paraffin-embedded MCC sections were stained for β5-integrin and counterstained with hematoxylin. MCC with high (A), medium (B) and weak (C) β5-integrin staining are shown. Magnification: 200x.